Annex 1

Cartographies

This annex is a collection of raw analysis and it's presented just a reference to the back-end work of this project. Therefore we advise using cartographies, charts and graphs from the main report, not from this annex, for decision making purposes. For best reference, you can also e-mail us at spin@spinunit.eu for the GIS cartographies.

Metrics

Number of Lines
 This metric corresponds to the
 number of lines that pass through week of Oct 7,2019 .
 This was calculated using GTFS
 data. The GTFS data was merged such that stop times and stop
 information was related (via trips and routes). From there, for each
 and routes). From there, for each stop's subset of this merged data the number of lines was calculated as the length of all unique oute_ids.
 Data Source/Provider. GTFS Date: Oct 7, 2019 Mean: 4.70 25-50-75:2-3-6 Minimum - Maximum: 1- 129

Frequency of Trips

This metric corresponds to a stop's
total number of departures, across all modes, during the weekdays o e week of Oct $7,2019$.

This was calculated as the number
of times the stop's stop_id
appeared in the merged dataset,
tescribed under Number of Lines.

Number of
Reachable
Selected Mobility

Hubs

This metric corresponds to the
number of selected mobility hub reached directly from a stop during the weekdays of the wee of Oct 7,2019 . Selected mobility hubs consist of Hobujaama, Estonia, Balti Jaam, Lennujaam
Kristiine, Haabersti, , vabaduse Väljak, Bussijaam, Harbor, Tondi The GTFS data was merged like it was for Number of Lines. For each stop, we extracted a subset of the merged data. If any of the contingent stops of the mobility hubs above could be reached
directly via a shared route, it was considered reachable.

Average Departure Delay
 This metric cor

 average departure delay in minutes for the weekdays of the week of Oct 7, 2019The Thorebi and Ridango data were merged. The date strings were then converted into datetime objects so that delay could be calculated (actual departure minus planned departure). This metric then calculated as the average of these delays from the stop in question for all departure between Oct 7 and Oct 11 (weekdays of the week of Oct 7 2019.)

$$
\begin{aligned}
& \text { Data Source/Provider: } \\
& \text { GTFS } \\
& \text { Date: Oct 7, } 2019 \\
& \text { Mean: } 883.76 \\
& \text { 25-50-75: } 50-235-1020 \\
& \text { Minimum - Maximum: } 5 \text { - } \\
& 9685
\end{aligned}
$$

Multimodality

This metric corresponds to the
number of unique modes of transport departing from a stop
during the weekdays of the week during the weekdays of the week Oct 7,201
Each of these modes is considered
distinct: (Bus) City line operated
by a public service contract, (Bus) ommercial line, (Bus) County line served by a public service contract, (Bus) Long distance and international line, Tram line, Troll line, Ferry line, Train line.

This was calculated by merging
he GTFS data and calculating the length of unique route_colou
modes) for the stop's subset.

25-50-75: 0-3-4
 Minimum - Maximum: 0-9

Delayed Departure
Percentage
This metric corresponds a stop's percentage of trips that were delayed (with a 1 minute tolerance during the weekdays of the week of Oct 7, 2019

The same list of delays used to calculate Average Departure Delay for a particular stop was used to calculate this metric. This metric is he percentage of these delays hat were greater than the
olerance $(1$ minute in both directions).
Data Source/Provider.
Thorebi + Ridango
Date: Oct 7, 2019-Oct 13,
2019
Mean: 68.92
25-50-75: 56.29-70-
82.93
Minimum - Maximum: 0-

On Time Departure

Percentage

This metric corresponds to a stop's percentage of trips that were on time (1 minute tolerance) during the weekdays of the week of Oct $7,2019$.

The same list of delays used to calculate Average Departure Delay for a particular stop was used to calculate this metric. This metric is the percentage of these delays that were fell within the tolerance (minute in both directions).

Local Line Load

Percentage

This metric corresponds to a stop's percentage of Local + Main Line Load, defined above, that was specifically from local lines for all of the weekdays during the entirety of October, 2019.

This was calculated trivially as the percentage of Local Line Load from Main + Local Line Load

Total Delay

This metric corresponds to a stop's total delay, in minutes, during the weekdays of the week of Oct 7, 2019.

The same list of delays used to calculare Average Departure Delay for a particular stop was used to calculate this metric. This metric is

Data Source/Provider. Thorebi + Ridango
Date: Oct 7, 2019 - Oct 13, 2019

Mean: 31.08
25-50-75: 17.07-30-43.71
Minimum - Maximum: 0-100
the sum of those delays.

Main Line Load

Percentage

This metric corresponds to a stop's percentage of Local + Main Line Load, defined above, that was specifically from local lines for all of the weekdays during the entirety of October 2019.

This was calculated trivially as the percentage of Main Line Load from Main + Local Line Load.

Regional bus operators

 (Tallinn municipal
transit excluded):

(aka Main + Local Line
Load)
This metric corresponds to a stop's otal weekday person load of departures on both local lines (lines contained within municipal borders) and main lines (county lines that cross municipal borders) for all weekdays during the entirety of October, 2019. A subset of the dataset was extracted for each unique stop_code. This metric is the sum of the total monthly weekday average for both the main line load and local line load for each stop_code.

Tallinn municipal transit

 (bus+tram+trolley):Card + Driver Check Ins)
This metric corresponds to a stop's otal number of checkins made via card and directly to the driver during weekdays of the week of Oct 7, 2019.
The dataset was filtered for weekdays using the day_code column. With that subset, a subset for each unique stop_code was created, and for each of those, the otal number of card check ins and driver tickets sold (driver check ins) were calculated as this metric.

Data Source/Provider. Ridango Date: Oct 2019, average of all work week days

Mean: 351
25-50-75: 9-40-169
Minimum - Maximum: 1-25403

Data Source/Provider: Ridango Date: Oct 7, 2019 - Oct 13, 2019

Mean: 1192.29
25-50-75: 95.50-360-1354 Minimum - Maximum: 0-24396

Metrics

Card Check Ins

Percentage

This metric corresponds to a stop's percentage of Card + Driver Check Ins, defined above, that were specifically made via card during the weekdays of the week of Oct 7 , 2019.

This was calculated trivially as the percentage of Card Check Ins from Card + Driver Check Ins.

Daia Source/Provider. Ridango
Date: Oct 7, 2019 - Oct 13, 2019

Mean: 99.40
25-50-75: 99.52-99.92-100
Minimum - Maximum: 78.95-100

Driver Check Ins

Percentage

This metric corresponds to a stop percentage of Card + Driver Check Ins, defined above, that were specifically made directly to the driver during the weekdays of the week of Oct 7, 2019.

This was calculated trivially as the percentage of Driver Check Ins from Card + Driver Check Ins.

Built SQM

This metric corresponds to the amount of built area, in sq. metres, within a given buffer from a stop. The built area in sq. metres was also calculated for the following building type subgroups: residential
non-residential, transport, industrial / warehouse, accommodation /catering, commercial /service office, entertainment, education health / other public.

This metric was calculated by creating a buffer $(100,500$, and 1000 m) around a stop and summing the total built SQM (in total as well as for each of the aforementioned as for each of the buildings locat within it.

Population

This metric corresponds to the total population within a given buffer from a stop. The populations of the following age subgroups were also calculated: 0-14, 15-64, 65 and over.

This metric was calculated by creating a buffer (100,500 and 1000 m) around a stop and storing he number of population units $(1 \mathrm{~km}$ by 1 km) from the census that intersected with the buffer, summing all of the intersecting populations values -- the total as well as the aforementioned subgroups.

Data Source/Provider. Census Date: 2011

For 100 m buffer

25-50-75: 32-326-2542 Maximum: 37237

Visits Count

This metric refers to the total
number of Foursquare visits within a
given buffer from a stop.
This metric was calculated by creating a buffer (100,500 , and 100 m) around a stop and summing the the total number of Foursquare visits located within it.

Data Source/Provider. Qualitative Date: 200
or 100 m buffer
Mean: 3761.70
25-50-75: 0-9-755
Maximum: 245843

Metrics

Places Count

This metric corresponds to the total number of Foursquare locations within a given buffer from a stop.

This metric was calculated by creating a buffer (100,500 , and 100 m) around a stop and summing the the total number of Foursquare places located within it..

Optional Activities

Count
This metric corresponds to the total
number of optional Foursquare
activities within a given buffer from
a stop.
This metric was calculated by creating a buffer (100,500 , and 100 m) around a stop and summing the the total number of optional Foursquare activities located within it..

Data Source/Provider: Qualitative analysis from Foursquare
Date: 2020
For 100 m buffer
Mean: 4.79
25-50-75: 0-0-2
Maximum: 215

Necessary Activities

Visits Count

This metric corresponds to the total number of visits to necessary Foursquare activities within a given buffer from a stop.

This metric was calculated by creating a buffer $(100,500$, and 1000 m) around a stop and summing the the total number of visits to necessary Foursquare activities located within it.

Data Source/Provider. Qualitative analysis from Foursquare
Date: 2020
For 100 m buffer
Mean: 2345.53
25-50-75: 0-0-151
Maximum: 205063

Necessary Activities

Count

This metric corresponds to the total number of necessary Foursquare activities within a given buffer from
a stop.
This metric was calculated by creating a buffer (100,500 , and 100 m) around a stop and summing the the total number of necessary oursquace activities located with it..

Optional Activities

Percentage

This metric corresponds to the percentage of activities that are optional activities within a given buffer from a stop.

This metric was calculated by creating a buffer (100,500 , and 1000 m) around a stop and calculating the percentage o Foursquare activities within it that are optional.

Data Source/Provider: Qualitative analysis from Foursquare Date: 2020

For 100 m buffer
Mean: 2.92
25-50-75: 0-0-2
Maximum: 74

Data Source/Provider: Qualitative analysis from Foursquare Date: 2020

For 100 m buffer.
For 100 m buff
25-50-75: 0.24-27.26-79.53
Minimum - Maximum: 0-100

Metrics

Necessary Activities

Percentage
This metric corresponds to the percentage of activities that are necessary activities within a given buffer from a stop.

This metric was calculated by creating a buffer (100,500 , and 1000 m) around a stop and calculating the percentage of Foursquare activities within it that are optional.

Data Source/Provider: Qualitative analysis from Foursquare
Date: 2020
For 100 m buffer
Mean: 47.40
25-50-75: 4.79-44.93-89.09
Minimum - Maximum: 0-100

Built SQM

This metric corresponds to the amount of built area, in sq. metres, within a given buffer from a stop. The built area in s metres was also calculated for the following building type subgroups industrial / warehouse, accommodation catering, commercial /service, office entertainment, education, health / other public.

$$
\text { Mean: } 4764
$$

$$
25-50-75: 66.2-884.7-4320.6
$$

$$
\text { Maximum: } 196614.8
$$

```

Visits Count
This metric refers to the total number of Foursquare visits within a given buffer from a stop.

\section*{Number of Lines}

This metric corresponds to the number of lines that pass through a stop during the weekdays of the week of Oct 7, 2019 .
This was calculated using GTFS data. The GTFS data was merged such that stop times and stop hormation was related (via trips and routes). Fro the number of lines was calculated as the length of all unique route_ids.

\section*{Data Source/Provider. GTFS}

Date: Oct 7, 2019
Mean: 4.70
25-50-75: 2-3-6
Minimum - Maximum: 1-129

Number of Lines
\begin{tabular}{|c|}
\hline 1 \\
\hline \(1-5\) \\
\hline \(6-10\) \\
\hline \(11-20\) \\
\hline \(21-50\) \\
\hline More than 50 \\
\hline
\end{tabular}

\section*{Number of Reachable \\ \section*{Selected Mobility Hubs}}

This metric corresponds to the number of selected mobility hubs reached directly from a stop during he weekdays of the week of \(\mathrm{Cct} 7,2019\). Selected mobility hubs consist of Hobujaama, Estonia, Balti
Jaam, Lennuiaam, Kristiine, Haabersti, Vabaduse Väliak, Bussijaam, Harbor, Tondi.
The GTFS data was merged like it was for Number of Lines. For each stop, we extracted a subset of the merged data. If any of the contingent stops of via a shared route, it was considered reachable.

\section*{Data Source/Provider: GTF}

Date: Oct 7, 2019
Mean: 2.54
5-50-75: 0-3-4
Minimum - Maximum: 0-9

Number of Reachable

\section*{Selected Mobility Hubs}
\begin{tabular}{|c|}
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline\(>5\) \\
\hline
\end{tabular}

\section*{Multimodality}

This metric corresponds to the number of unique modes of transport departing from a stop during

Each of these modes is considered distinct: (Bu) City line operated by a public service contract, Bus) Commercial city line, (Bus) County
public service contract, (Bus) Long distance and international line, Tram line, Troll line, Ferry line
Train line. Train line
his was calculated by merging the GTFS data and calculating the length of uniau
(modes) for the stop's subset.

Data Source/Provider: GTFS Date: Oct 7, 2019

\section*{Mean: 1.38}

25-50-75:1-1-2
Minimum - Maximum: 1-4

Multimodality
\(\square\)

\section*{Frequency of Trips}

This metric corresponds to a stop's total number of departures, across all modes, during the

This was calculated as the number of times the stop's stop_id appeared in the merged dataset, the composition of which is described under Number of Lines.

Data Source/Provider. GTFS Date: Oct 7, 2019

Mean: 883.76
25-50-75: 50-235-1020
Minimum - Maximum: 5-9685

Frequency of Trips
\begin{tabular}{|c|}
\hline \(1-15\) \\
\hline \(15-500\) \\
\hline \(500-5000\) \\
\hline \(5000-10000\) \\
\hline
\end{tabular}

\section*{Average Departure}

Delay
This metric corresponds to a stop's average departure delay in minutes for the weekdays of the week of Oct 7, 2019 .

The Thorebi and Ridango data were merged. The date strings were then converted into datetime objects so that delay could be calculated (actual departure minus planned departure). This metric was then calculated as the average of these dela between Oct 7 and Oct 11 (weekdays of the w ct 7, 2019).

Data Source/Provider. Thorebi + Ridango Date: Oct 7, 2019 - Oct 13, 2019

\section*{Mean: 1.029}

25-50-75:0.74-1.3-207
Minimum - Maximum: -392.27-9.5

\section*{Average Departure}

Delay
Early
\begin{tabular}{|c|}
\hline\(<-20\) \\
\hline\(-20<-15\) \\
\hline\(-15<-10\) \\
\hline\(-10<5\) \\
\hline\(-5<-1\) \\
\hline\(-1<1\) (on-time) \\
\hline \(1<5\) \\
\hline \(5<10\) \\
\hline
\end{tabular}

Late

\section*{On Time Departure}

\section*{Percentage}

This metric corresponds to a stop's percentage of trips that were on time (1 the week of Oct 7, 2019.

The same list of delays used to calculate Average Departure Delay for a particular stop was used to calculate this metric. This metric is the percentage of these delays that were fell within the tolerance (1 minute in both directions).

\section*{Data Source/Provider. Thorebi + Ridango} Date: Oct 7, 2019 - Oct 13, 2019

On Time Departure
Percentage
0\% - 5\%
5\% - 10\%
10\%-25\%
25\% - 50\%
50\%-75\%
75\% - 100\%

\section*{Regional bus operators} (Tallinn municipal transit excluded):
(aka Main + Local Line Load)
This metric corresponds to a stop's total weekday person load of departures on both local lines llines contained within municipal borders) and main lines (county lines that cross municipal borders) for all weekdays during the entirety of October, 2019. A subset of the dataset was
extracted for each unique stop_code. This metric is the sum of the total monthly weekday average for both the main line oad and local line load for each
stop_code.

\footnotetext{
Data Source/Provider. Ridango
Date: Oct 2019, average of all work week
}
days

\section*{ean: 351}

25-50-75: 9-40-169
Minimum - Maximum: 1-25403

Main + Local Line Load
\begin{tabular}{|c|}
\hline \(0-5\) \\
\hline \(5-10\) \\
\hline \(10-50\) \\
\hline \(50-100\) \\
\hline \(100-1000\) \\
\hline \(1000-26000\) \\
\hline
\end{tabular}

\section*{Tallinn municipal transit}

\section*{(bus+tram+trolley):}
(Card + Driver Check Ins)
This metric corresponds to a stop's tota
number of checkins made via card and directly to the driver during weekdays of the week of Oct 7, 2019

The dataset was filtered for weekday using the day_code column. With that subset, a subset for each unique
stop_code was created, and for each of
those, the total number of card check ins and driver tickets sold (driver check ins) were calculated as this metric.

\section*{Mean: 1192.29}

25-50-75: 95.50-360-1354
Minimum - Maximum: 0-24396

Tot Passengers check-ins on weekdays
\begin{tabular}{|c|}
\hline \(0-5\) \\
\hline \(5-20\) \\
\hline \(20-50\) \\
\hline \(50-500\) \\
\hline \(500-25000\) \\
\hline
\end{tabular}

\section*{Population}

This metric corresponds to the total
population within a given buffer from a
stop. The populations of the stop. The populations of the following age subgroups were also calculated: 0-14, 15-64, 65 and over.
This metric was calculated by creating a buffer ( 100,500 and 1000 m ) around a stop and storing the number of population units ( 1 km by 1 km ) from the census that intersected with the buffer, summing all of the intersecting populations values -- the total, as well as the aforementioned
subgroups.

\section*{Data Source/Provider. Census} Date: 2011
or 100 m buffer
lean: 2475.90
25-50-75: 32-326-2542
Maximum: 37237

\section*{Population}

0-50
50-100
000

\section*{Building Count}

This metric corresponds to the total
number of buildings within a given buffer from a stop.

This metric was calculated by creating a buffer ( 100,500 , and 1000 m ) around a stop and counting the number of building polygons within it.

Data Source/Provider: EHR (Ehitisregister) Date: 14.01.2030

For 100 m buffer
Mean: 7.66
25-50-75: 1-4-10
Maximum: 126

Building Count
\begin{tabular}{|c|}
\hline \(0-5\) \\
\hline \(5-10\) \\
\hline \(10-20\) \\
\hline \(20-50\) \\
\hline \(50-130\) \\
\hline
\end{tabular}

\section*{Built SQM}

This metric corresponds to the amount of
built area, in sq. metres, within a given
buffer from a stop. The built area in sq.
metres was also calculated for the
following building type subgroups:
residential, non-residential, transport,
industrial / warehouse, accommodatio
/catering, commercial /service, office,
entertainment, education, health / other
public.
This metric was calculated by creating a buffer (100, 500, and 1000 m ) around a stop and summing the total built SQM (in total as well as for each of the
aforementioned subgroups) of the buildings located within it Date: 14.01.2030

\section*{For 100 m buffer}

Mean: 476
25-50-75: 66.2-884.7-4320.6
Maximum: 196614.8

Built SQM

\section*{Optional Activities}

\section*{Percentage}

This metric corresponds to the percentage of activities that are optional activities within a given buffer from a stop.
his metric was calculated by creating buffer ( 100,500 , and 1000 m ) around a stop and calculating the percentage of Foursquare activities within it that are optional.

\section*{Data Source/Provider. Foursquare} Date: 200

\section*{Necessary Activities}

\section*{Percentage}
his metric corresponds to the necessary activities within a given buffer from a stop.

This metric was calculated by creating a buffer ( 100,500 , and 1000 m ) around a stop and calculating the percentage of Foursquare activities within it that are optional.

\section*{Data Source/Provider. Foursquare}

Date: 200
For 100 m buffer
ean: 47.40
25-50-75: 4.79-44.93-89.09
Minimum - Maximum: 0-100

Necessary Activities Percentage
\begin{tabular}{|r|}
\hline \(0-20\) \\
\hline \(20-40\) \\
\hline
\end{tabular}

20-40

60-80
80-100

\section*{Ranking}

\section*{POTENTIAL DEMAND}

SCORE
A score between 1 and 5 for each stop signalling its relative performance (for all buffers) against the other stops with respect to their Demand, which is composed of Number of Lines, Number of Reachable Selected Mobility Hubs, and Multimodality.
For each of these constituent metrics of Demand, a
quantile-based discretisation
function was applied generating 5
buckets. This score is thenerating 5 buckets. This score is the average constituent metrics.

PERFORMANCE SCORE
A score between 1 and 5 for each
A score between 1 and stop signalling its relative
stop signalling its relative
performance (for all buffers) against
performance (for all buffers) agains
the other stops with respect to their
Performance, which is composed of requency of Trips, all of the metric pertaining to delay, and all of the
metrics pertaining to popular
metrics of Performance, a
quantile-based discretisation
function was applied, generating 5
buckets. This score is the average of those buckets across all of the constituent metrics.

\section*{POTENTIAL DEMAND}

\section*{SCORE}

A score between 1 and 5 for each stop signalling its relative performance (for al
buffers) against the other stops with
respect to their Demand, which is
composed of Number of Lines, Number of Reachable Selected Mobility Hubs, and Multimodality

For each of these constituent metrics of Demand, a quantile-based discretisation function was applied, generating 5 buckets. This score is the average of those buckets across all of the constituent metrics

\section*{Data Source/Provider. Foursquare}

Date: 200
Mean: 3
25-50-75: 1.86-3-4.1
Minimum - Maximum: 1 - 5

Demand Score

\section*{PERFORMANCE SCORE}

A score between 1 and 5 for each stop
signalling its relative performance (for all buffers) against the other stops with respect to their Performance, which is composed of Frequency of Trips, all of the metrics pertaining to delay, and all of the metrics pertaining to popularity.
For each of these constituent metrics of Performance, a quantile-based discretisation function was applied, generating 5 buckets. This score is the average of those buckets across all of the constituent metrics.

\section*{Data Source/Provider. Foursquare} Date: 200

Mean: 3.01
25-50-75:2.33-3.10-3.71
Minimum - Maximum: 1-5

\section*{Performance Score}

\section*{GRAPHS}

Population in surroundings


Population-500


Population-1000


INDICATORS
Population in surroundings
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Population-100} \\
\hline Stop Code & \\
\hline 19518-1 & Marduk kalmistu, urban \\
\hline 19517-1 & Mardu kalmistu , urban \\
\hline 19108-1 & Iruküla, urban \\
\hline 19107-1 & Irukula, urban \\
\hline 19105-1 & Iruelekrrijam, \\
\hline 19102-1 & Vasar, urban \\
\hline 19101-1 & Vasar, urban \\
\hline 14504-1 & Betooni, urban \\
\hline 14303-1 & Pikamăgi, urban \\
\hline 14302-1 & Pikamăgi, urbon \\
\hline 14004-1 & Paneeli, uria \\
\hline 14003-1 & Paneeli, urban \\
\hline 14002-1 & Sostranäe, urban \\
\hline 14001-1 & Sostramao, urban \\
\hline 13902-1 & Betooni paik, urban \\
\hline 13901-1 & Betooni paik, urban \\
\hline 13808-1 & Nula, urban \\
\hline 13807-1 & Nuia, urban \\
\hline 13806-1 & Ruunaja, urban \\
\hline 13805-1 & 50jambe, urban \\
\hline 13804-1 & Raudbetooni, urban \\
\hline 13803-1 & Raucbetooni, urban \\
\hline 13802-1 & Ruunaja, urb \\
\hline 13801-1 & Ruunajia, urban \\
\hline 13707-1 & Suur-5jjamze, urban \\
\hline 13706-1 & Suur-Sojiamze, urban \\
\hline 13606-1 & Punhamagi, urbar \\
\hline 13516-1 & Lennujam, urban \\
\hline 09305-1 & Paljassararepök, urban \\
\hline 06604-1 & Liva Kalmistu, urban \\
\hline 06603-1 & Livakalmistu, urban \\
\hline 06502-1 & Kalmu, urban \\
\hline 06601 & \\
\hline
\end{tabular}

Population-500
Stop Code
22809-1 | Liskila, rural
22748-1 | Varese, rural
22747-1 | Varese rural
22710-1 | Hưrispea, rural
22709-1 | Huritipea, rural
22352-1 | Kusiku I, rural
22351-1 | Kussiku |,rural
22330-1 | Säaskila, rural
22329-1 | Stäskïla, rural
22306-1 | Jaggu, rural
22305-1 | Jagu, rural
22177-1 | Viskla öplaste, uural
22120-1 | Lendermaa, rural
22119-1 | Lendermaa, rural
21954-1 | Janaika, rural
21953-1 | Jaanika, rural
21938-1 | Mönuste, rural
21937-1 | Mönuste, rural
21934-1 | Milimaa, rural
21933-1 | Milimaa, rural
21932-1 | Metsanurga, rural
21931-1 | Metsanurga, rural
21756-1 Tômmiku, rural
21755-1 | Tômmiku, rural
21731-1 | Luri, ural
21465-1 | Kreo, rural
21464-1 | Kreo, rural
21420-1 | Paluküa, rural
21419-1 | Palukǜa, rural
13807-1 | Nuia, urban
13805-1 Sరijamèe, urban
13804-1 Routbetooni, urban
13803-1 Raudbetooni, urban

Population-1000
Stop Code
37102-1 Mustjöe, rural
37101-1 | Mustioe, rural
32806-1 | Hara side, rural 32805-1 | Hara side, rural 22363-1 | Kiruvere, rural 22362-1 | Kiruvere, rural 22328-1 | saumetsa, rural 22327-1 | Ssumetsa, rural 37306-1 | Törrepobhia, rural 37202-1 | Metskoma, rural 37201-1 | Metskonna, rural 37007-1 | Pillapalukila, rural 37002-1 | Pillapalu, nural 37001-1 | Pillapalu, rural 28452-1 | Lamme, rural 28451-1 | Lanme, ural 26406-1 | Punakivi, rural 26405-1 Punakivi, rural 22824-1 | Surrekiv, rural 22823-1 | Surekivi, rural 22814-1 | Maissoo, rural 22813-1 | Maissoo, rural 22352-1 | Kusiku I, rural 22351-1 | Kusiku I, rural 22306-1 Jasgu, ural 22305-1 | Jaguu, fural 22120-1 Lenderma, rural 22119-1 | Lendermaa, rural 21954-1 J Janika, rural 21953-1 | Jannika, rural 21465-1 | Kreo, rural 21464-1 | kreo, rural 13805-1 Sర̈jamëe, urban

Population 0-14 years old in surroundings



Kids-1000


INDICATORS
Population 0-14 years old in surroundings



Kids-1000
Stop Code
32806-1 | Hera side, rural
32805-1 | Hara side, ruval
28452-1 | tamme, rural
28451-1 | Lamme, rural
26406-1 | Punakivi, rural
26405-1 | Punakivi, ural
22826-1 | suurso, rural 22825-1 Suursoo, rural 22824-1 | Suurekivi, rura 22823-1 | Surekivi, rural 22814-1 | Maissoo, rural 22813-1 | Maissoo, rural 227041 | Aude, nural 22703-1 | Aude, rural 22352-1 | Kusiku । , urol 22351-1 | Kusiku । , rural 22344-1 |kirvalla, rura| 22343-1 | Kirivalla, rural 22334-1 | Virla, rural 22328-1 Seumetsa, rura 22327-1 | Suumetsa, rural 22306-1 | Jaagu, rural 22305-1 | Jagau, rural 22120-1 | Lendermaa, rura 22119-1 Lendermas, rura 21954-1 |Janika, rural 21953-1 | Jaanika, rural 219341 | Milimaa, ural 21933-1 | Milimaa, rural 21465-1 | Kreo, rural 21464-1 Kreo, rural 13805-1 |Solamze, urban 09306-1 Pikakari, urban

Population 15-64 years old in surroundings



Adults-1000


Population 15-64 years old in surroundings



\section*{Adults-1000}

\section*{Stop Code}

22362-1 |kirvere, rural 22344-1 | kirivala, rural 22343-1 | Kirvivala, rura 21934-1 | Milimaa, rural 21933-1 | milimea, nural 22826-1 | Suursoo, rural 22825-1 | sursoo, rural \(22334-1\) | Virla, rural 37306-1 | Törrepobhia, rural 37202-1 | Metskoma, rural 37201-1 | Metskonna, rura 37007-1 | Pillapalu kila, rura 37002-1 | Pillapalu, nural 37001-1 | pillopalu, rura 28452-1 | Lamme, rural 28451-1 | Lanme, urral 26406-1 | Punakiv, rural 26405-1 Punakivi. rural 22824-1 | Surrekivi, rural 22823-1 | Surekivi, rural 22814-1 | Maissoo, rural 22813-1 | Maissoo, rural 22352-1 | Kusikik I, rural 22351-1 | Kusikul, rural 22306-1 | Jangu, ural 22305-1 | Jaagu, ural 22120-1 | Lendermaa, rural 22119-1 | Lendermaa, rural 21954-1 | Janaika, rural 21953-1 | Jaanike, rural 21465-1 | Kreo, rural 21464-1 | kreo, rural 13805-1 | Söjmmèe, urban

\section*{INDICATORS}

Population over 65 years old in surroundings


Senior-500


Senior-1000


Population over 65 years old in surroundings

Senior-100
Stop Code 19403-1 Koplinäe, urban
19402-1 Koplinà, urban
19108-1 | rukuïla, urban
19107-1 |ruküla, urban
19105-1 | rue lektrijaam, urban
19102-1 | Vasar, urban
19101-1 Vasar, urban
14504-1 Betooni, urban
14303-1 | Pikamàgi, urba
14302-1 Pikamagi, urban
14004-1 | Paneeli,urban
14003-1 Paneeli, urban
14002-1 Söstramäe, urban
14001-1 Sostramäo, urban
13902-1 Betooni päik, urban
13901-1 Betooni päik, urban
13808-1 | Nuia, urban
13807-1 Nuia, urban
13806-1 Ruunaja, urban
13805-1 5ojame, urban
13804-1 Raudbetooni, urban
13803-1 Raudberoon, urban
13802-1 Ruunaja, urban
13801-1 Ruunajia, urban
13707-1 Sur-Sjijamé, urban
13706-1 Sur-Sj̄jamée, urban
13606-1 | Puthanagi, uroan
13516-1 Lennujaam, urban
09305-1 Palijassaare pöik urban
6604-1 | Liva kalmistu, urban
06603-1 | Livivakalmistu, urban
06502-1 Kalmu, urban
06601-1 Kalmu, urban

\section*{Stop Code} 22306-1 J Jagu, rural 22305-1 Jaagu, rural 22177-1 | Viskla öpilaste, rural 22120-1 | Lenderma, rural 22119-1 | Lendermaa, rural 22033-1 Sookeera, rural 21954-1 Jaanka, rura 21953-1 Jaanika, rura 21938-1 | Mönuste, ural 21937-1 | Mönuste, rural 21934-1 | Milima, rural 21933-1 | Milimaa, rural 21932-1 | Metsanurga, rural 21931-1 | Metsanurga, rura 21799-1 | Adruvah, rural 21756-1 | Tömmiku, rural 21755-1 |Tömmiku, rural 21731-1 Luuri, nural 21729-1 | Adruvah, rural 21721-1 | Kiesalu, rura 21720-1 | Kaesalu, rural 21465-1 | Kreo, rural 21464-1 | Kreo, rura 21452-1 | Veta, rural 21451-1 Veta, rural 21420-1 | Palukuia, rural 21419-1 | Palukua, rural 19608-1 Kö̈ba,urban 19607-1 Kö̈ba,urban 13807-1 Nuia, urban 13805-1 Sojjamëe, urban 13804-1 Ruutbetooni, urban 13803-1 Raudbetooni, urban

Senior-1000
```

Stop Code 37007-1 | Pillapalukilia, rua 37002-1 | Pillapalu, rura 37001-1 | Pillapalu, rur 28452-1 | Lamme, rural 28451-1 Lamme, rural 26908-1 |hita, rural 26406-1 | Punakivi, rural 26405-1 | Punakivi, rural 26402-1 | hasalutee, rural 26401-1 | hasalutee, rural 23288-1 |Traksi, rural 23287-1 Traksi, rural 231741 | Tunalatee, rural 23173-1 | Tunala tee, rura 22834-1 |Vilivalla, rural 22833-1 Vilivalla, rural 22824-1 | surekvi, rural 22823 - 1 Suurekivi, urual 22814-1 | Maissoo, rural 22813-1 | Maissoo, rural 22352-1 | Kusiku I, , ural 22351-1 | Kusikul. . rural 22306-1 J Jagu, rural 22305-1 Jaggu, ural 22120-1 | Lendermaa, rura 22119-1 Lendermaa, rural 22033-1 | sookerara, rural 219541 | Jannika, rural 21953-1 J Janika, rural 21720-1 | Kêesalu, rural 21465-1 Kreo, rural 21464-1 | kreo, rural 13805-1 Sढ̈jamze, urban
37007-1 | Pillapalukilla,rur
37001-1 pil
551-1 Lamme,
08-1 | hita,rural
05-1 | Punakivi, rural
02-1 Ihasalutee, ,ural
88-1 Traksi, rural
1741 Tunalatee, rura
*)
833-1 Nwvala,rural

```
    ok
        K 5 K

\author{
PERFORMANCE
}






Residential Sqm-1000
\(\qquad\)



\section*{MULTIMODALITY}

The number of unique modes of transport departing from a stop during the weekdays of the week of Oct 7, 2019. At the moment, the following are considered distinct modes: (Bus) City line operated by a public service contract, (Bus) Commercial city line, (Bus) County commercial line, (Bus) County line served by a public service contract, Long-distance and international lines (Bus), Tram line, Troll line, Ferry line, Train line

\section*{Multimodality}


Multimodality100


Multimodality500


Multimodality1000




\section*{BOTTOM 25\%}


Number of Lines


AVG Number of Lines





TOP 25\%





Local+Main Load1000


BOTTOM 25\%

\section*{Regional bus operators (Tallinn excluded): Lording of people from PT Bus Stops
Provider Ridinango
Time: 2019,0 October all weekdays (M-F) Time: 2019. October, al weekdays 1 Locoll line: local line lline contained within
municipol borders) load Main line: main line Icountry line that crosses
municioi borders) locod municipol borders) load}


Regional bus operators (Tallinn excluded):
Looding of feople from PT Bus Stops
Provider. Ridango
Time: 2019 O Ctober, all weekdays (M-F)
Stop code: the stop's stop code
Local line: local line lline contained within
Main line: main line I country line thot crosses
municipal borders) lood


Multimodality

SPIN DENOS \(\cdots\) Main Line Load \%


1
2


TOP 25\%


BOTTOM 25\%


Checkins-100


\section*{Checkins-500}

Checkins-1000


TOP 25\%








DepartureLoad1000




BOTTOM 25\%


\section*{OnTime\%}

Stop Code
21925-1 | Laitse loss, rural
\(21925-1 \mid\)
\(21837-1 \mid\) Latse loe loss, ruan
218304-1 Jama, urban
21804-1 Jaama, urban
21771-1 | Talu, rural
21768-1 Uuetoo, rural
21756-1 |Tommiku, rural
21739-1 Muluka, rural
21721-1 Kaesalu, rural
21706-1 | Kariakila, rural
21591-1 | Vatsla, rural
21590-1 Tanmemae, town
21588-1 | Institucil, rural
21584-1 \(\mid\) Kumne/Metsak
21584-1 Kumnamex
21515-1 Küte, rural
\begin{tabular}{|c|c|}
\(21406-1\) & Kaunissarere, rural \\
\(21205-1\) & Estonia, urban
\end{tabular}
20006-1 | hireherene tee, urban
20005-1 |ônnapu puiestee, urban
19907-1 | Kirsipuu puiestee, urban
19524-1 Haigla, urban
19519-1 Kütte, urbar
17601-1 Likuri, urban
16905-1 Kose tee, urban
16905-1 Kose tee, uram
16903-1 Jussi, urban
16704-1 Kellukatee, , un
16506-1 Priisie, urban
13804-1 Ruadbetooni, urban
13802-1 Ruunajia, urban
12003-1 Vabaduse velijak, urban
12002-1 Vabaduse viliak, urba
06409-1 Llivejaam, urban
05103-1 Hoimu, uran
03001-1 Livaku, urran
\(\begin{array}{lllllllll}0 & 20 & 40 & 60 & 80 & 100 & 120 & 140 & 160\end{array}\)
ON TIME DEPARTURE PERCENTAGE ( \(m\)-f week of oct 7 , 2019) (\%) (..
BOTTOM 25\%

Average Departure Delay



Reachable selecte \(\qquad\)
. Hobujaama+ Viru keskus+ A. Laikmaa 2. Estonia
3. Balti jaam
4. Lennujaam
5. Kristiine (Taksopark+ Lilleküla)
6. Haabersti
7. Vabaduse väljak
8. Bussijaam
9. Harbor (A-terminal, D-terminal)
10. Tondi+ Kalev


TOP 25\%

Reachable Hubs
Stop Code
04805-1 Hiu, urban
04804-1 Hilu, urban
04803-1 | Pallu, urban
4802-1 Raucte, urban
04801-1 Raudte, urban
04709-1 | Kadaka puiestee, urban
04708-1 Tanetorni, urban
04707-1 TThetorni, urban
04706-1 Vaana, urban
04705-1 Väna, urban
04704-1 Pidu, urban
04703-1 Pidu, urban
\(04702-1\) Hiiu jam, urban
4702-1 Hiuyaam, urban
4/01-1 Conam,
4604-1 Ronua, urba
居
4409-1 Lagh, urban
04204-1 | Paaskila Gümnassium, urban
04107-1 Varsi. urban
04106-1 Paskkila, urban
04105-1 | Paaskila, urban
04103-1 | Pasaskila jaam, urban
3801-1 | Kadaka puiestee, urban
03303-1 | Evilde tee, urban
03205-1 | Kariavalia, urban
3203-1 Lakkitss, urban
3101-1 | Kadaka, urban
02108-1 Lakiotsa, urban
01904-1 Harku-Kadake, urban
01903-1 Harku-Kadaka, urban
01902-1 Astangu, urban
01901-1 | Astangu, urban


\section*{INDICATORS}

MULTIMODALITY VS AVERAGE DELAY


INDICATORS
MULTIMODALITY VS TOTAL DELAY

TotalDelay
MULTIMODALITY / Stop Code


\section*{INDICATORS}

MULTIMODALITY VS FREQUENCY


AVERAGE DELAY VS FREQUENCY


Number of public transit vehicles that have stopped at and/or departed from each stop (in week monday to friday).

Every dot is one stop.



Multimodality does not appear to be the cause of delay.

Single-mode stations are the ones carrying more dalay (influenced by long trips - highway stops)

\section*{INDICATORS}

CHECK-INS VS POPULATION (500m)


On Time Departure \%




\section*{2 \\ INDICATORS}

SERVICE


\section*{INDICATORS}

On Time Departure percentage
```

On Time Departure Percentage
This metric corresponds to a stop's percentage of trips that were on time (1 minute tolerance) during the weekdays of the week of Oct 7, 2019.
The same list of delays used to calculate Average Departure Delay for a particular stop was used to calculate this metric This metric is the percentage of these delays that were fell within the tolerance (1 minute in both directions.
Data Source/Provider: Thorebi + Ridango Date: Oct 7, 2019 - Oct 13, 2019

```

\section*{Mean: 31.08}
```

Mean: 31.08
25-50-75: 17.07-30-43.71
Minimum - Maximum: 0-100

```
```

Comments to the graph

```


Percentage of trips (On time, delayed and early arrival)


Percentage of trips (On time, delayed and early arrival)

\section*{INDICATORS}

On Time Departure percentage by municipality


\section*{INDICATORS}

Percentage of on time trips grouped by hour

\section*{On Time Departure}

\section*{Percentage}

This metric corresponds to a stop percentage of trips that were on time (1 minute tolerance) during the weekdays of the week of Oct 7, 2019.

The same list of delays used to calculate Average Departure Delay for a particular stop was used to calculate this metric. This metric is the percentage of these delays that were fell within the tolerance (1 minute in both directions).
 Date: Oct 7, 2019 - Oct 13, 2019

Mean: 31.08
25-50-75: 17.07-30-43.71
Minimum - Maximum: 0-100
\(\pm\)

Comments to the graphs


\section*{INDICATORS}

\section*{Number of trips in a week by hour depending on scale}

\section*{On Time Departure}

\section*{Percentage}

This metric corresponds to a stop's percentage of trips that were on time ( 1 minute tolerance) during the weekdays of the week of Oct 7, 2019 .

The same list of delays used to calculate Average Departure Delay for a particular stop was used to calculate this metric. This metric is the percentage of these delays that were fell within the tolerance (1 minute in both directions).


\section*{INDICATORS}

On time departure percentage by municipality


\section*{INDICATORS}

Multimodality / Number of line

Multimodality score


\section*{INDICATORS}



SpiN PEMOS
(3) STOPS DESIGN POSSIBILITIES

\section*{Small}

Type 1 - Small + Standard (Bus)


Type 1 - Small + Standard (Tram)


Type 2 - Small + Improved (Bus)


\section*{Type 2 - Small + Improved (Tram)}


Medium

Type 3 - Medium + Standard (Bus)


Type 3 - Medium + Standard (Tram)


Type 4 - Medium + Improved (Bus)


Type 4 - Medium + Improved (Tram)


\section*{Large}

Type 5 - Large + Standard (Bus)


Type 5 - Large + Standard (Bus)


\section*{Type 6 - Large + Improved (Bus)}


Type 6 - Large + Improved (Tram)


SpiN PEMOS

\section*{TRAIN}

TRAIN - Type 1 - Small + Standard


TRAIN - Type 2 - Medium + Standard
```

